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a b s t r a c t

Algebraic topological characterizations of the structural balance in signed graphs are considered
in this work. Leveraging tools from the algebraic topology, simplicial complexes are used instead
of conventional graphical approaches to model signed graphs and capture their global topological
properties. Topological invariants, such as homology and cohomology, are then explored to extract
topological characterizations of the structural balance from the simplicial-complex-based models. The
developed topological characterizations reveal that the structural balance is closely related to the first
homology and cohomology of the modeled simplicial complex. Examples are provided to demonstrate
the developed topological insights of the structural balance and how it can be leveraged to construct
networks with desired topologies.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic networks exist widely in natural, social, and engi-
neering systems, such as neural networks (Crossley, Mechelli,
Vértes, Winton-Brown, Patel, Ginestet, McGuire, and Bullmore,
2013), social networks (Girvan & Newman, 2002), networked
robotic systems (Olfati-Saber, Fax, & Murray, 2004), power net-
works (Fang, Misra, Xue, & Yang, 2012), and sensor networks
(Choi & How, 2011). To study such dynamic networks, unsigned
graphs that only admit positive edge weights have long been a
research focus in modeling collaborative networks. Average con-
sensus (Ren, Beard, & Atkins, 2007), formation control (Kan, Dani,
Shea, & Dixon, 2012), and flocking (Tanner, Jadbabaie, & Pappas,
2007) are typical applications, where agents positively evaluate
information collected from neighboring agents and coordinate to
perform network-wide goals. A key assumption in most of the
aforementioned results is that the dynamic network is inherently
collaborative. However, practical networks are not necessarily
collaborative and can even be competitive. For instance, agents
may compete for the use of bandwidth in a communication
network (Yaïche, Mazumdar, & Rosenberg, 2000), and individuals
tend to have friend/adversary or trust/distrust relationships in
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social networks (Jackson, 2010). Therefore, signed graphs that
allow positive and negative edge weights are more plausible in
modeling practical networks with collaborative and competitive
interactions.

The structural balance is a topological characterization of
signed graphs (Harary et al., 1953). Roughly speaking, the struc-
tural balance indicates the capability of dividing a network into
two subgroups such that nodes within each subgroup have only
collaborative relationships (i.e., positive edges), while nodes from
different subgroups are connected by antagonistic relationships
(i.e., negative edges). Recent research shows that the structural
balance is crucial in determining the network performance. For
instance, the bipartite consensus over a network with antago-
nistic interactions was established in Altafini (2013) provided
that the network is structurally balanced. The developed bipar-
tite consensus was then extended for signed directed networks
(Jiang, Zhang, & Chen, 2017), signed switching networks (Meng,
Meng, & Hong, 2018), general linear agents (Zhang & Chen,
2017), and high-order system dynamics (Wu, Zhao, & Hu, 2017).
Despite various system dynamics and network topologies, the
structural balance is a common necessary condition for achieving
bipartite consensus in the aforementioned results (Altafini, 2013;
Jiang et al., 2017; Meng et al., 2018; Wu et al., 2017; Zhang
& Chen, 2017). Besides engineering applications, the structural
balance has also been explored in the context of social and opin-
ion networks (Antal, Krapivsky, & Redner, 2005; Kunegis, 2014;
Marvel, Kleinberg, Kleinberg, & Strogatz, 2011; Proskurnikov,
Matveev, & Cao, 2016) to reveal the evolution of individual’s
social states in the presence of trustful and distrustful interac-
tions. Recent research also indicates that the structural balance
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provides insights in addressing network stabilization and con-
trollability (Alemzadeh, de Badyn, & Mesbahi, 2017; de Badyn,
Alemzadeh, & Mesbahi, 2017; Liu, Chen, & Başar, 2016; Sun, Hu,
& Xie, 2017). The verification and prediction of the structural
balance in signed networks were investigated from a data-driven
perspective in Pan, Shao, and Mesbahi (2016).

Due to the significance of the structural balance in network
performance, this work is particularly motivated to investigate
the fundamental relationship between the structural balance and
the underlying topological structure of signed graphs. Different
from existing graph theoretic approaches, algebraic topology is
explored. Drawing on techniques from algebraic topology, alge-
braic topological spaces and invariants are exploited to extract
the topological properties of the structural balance in signed
graphs. Specifically, instead of using conventional graphs, sim-
plicial complexes are employed as the primary tool to model
the signed graph. As a generalization of conventional graphi-
cal models, simplicial complexes are able to capture the global
topological properties of the signed graph. Topological invariants,
such as homology and cohomology, are then explored to ex-
tract topological characterizations of the structural balance from
the simplicial-complex-based models. The developed topological
characterizations reveal the fundamental relationship between
the structural balance and the underlying network topology by
showing that the structural balance is closely related to the first
homology and cohomology of the modeled simplicial complex. In
particular, the vanishing first homology and cohomology along
with positive 3-node circular subgraphs are found to be sufficient
to lead to a structurally balanced network. Examples are provided
to demonstrate the developed topological insights of the struc-
tural balance and how it can be leveraged to construct networks
with desired topologies.

The contributions of this work are multi-fold. First, simplicial
complexes are used as a novel modeling approach to represent
and analyze signed networks. Compared to conventional graph-
ical models, simplicial complexes generalize graphical models
in the sense that, in addition to the binary relations between
nodes as in standard graphs, they also capture the higher-order
topological relations among them (Hatcher, 2001). Consequently,
simplicial complexes are able to provide insights into network
topologies that are unobtainable from standard graphs or other
traditional modeling and analysis methods. Second, the use of
the simplicial complex opens a new door to investigate networks,
where new sets of analysis tools from algebraic topology become
available. In particular, as topological invariants that can only be
extracted from simplicial complexes, homology and cohomology
are exploited to unravel the fundamental relationship between
the structural balance and the network topology. Motivated by
the recent research of using homology to verify sensor network
coverage (Chintakunta & Krim, 2014; De Silva & Ghrist, 2006;
Tahbaz-Salehi & Jadbabaie, 2010), the homology and cohomology
are extended in this work to unravel the topological properties of
signed graphs, which has received little research attention in the
literature.

2. Problem formulation

Consider a multi-agent system with cooperative and antag-
onistic interactions represented by an undirected signed graph
G = (V, E,W), where the node set V = {v1, . . . , vn} and the edge
set E ⊂ V ×V represent the agents and the interactions between
pairs of agents, respectively. Let wij: E → {±1} denote the weight
associated with the edge

(
vi, vj

)
∈ E . If wij = 1, vi and vj are called

positive neighbors and negative neighbors if wij = −1. Positive
neighborhood indicates cooperative interactions while negative
neighborhood indicates competitive interactions. The interactions

within G are then captured by the adjacency matrix W =
[
wij

]
∈

Rn×n, where wij = 0 if
(
vi, vj

)
/∈ E . No self-loop is considered,

i.e., wii = 0 ∀i = 1, . . . , n. A path of length k in G is a concate-
nation of distinct edges {(v1, v2) , (v2, v3) , . . . , (vk, vk+1)} ⊂ E . A
circular subgraph1 of length k in G is a path with identical starting
and end node, i.e., v1 = vk+1. Graph G is connected if there exists
a path between any pair of nodes in V .

Definition 1 (Altafini, 2013). A connected signed graph G =

(V, E,W) is structurally balanced if the node set V can be par-
titioned into V1 and V2 with V1 ∪ V2 = V and V1 ∩ V2 = ∅, where
wij > 0 if vi, vj ∈ Vq, q ∈ {1, 2}, and wij < 0 if vi ∈ Vq and vj ∈ Vr ,
q ̸= r , and q, r ∈ {1, 2}. Otherwise it is structurally unbalanced.

Definition 1 indicates that, for a structurally balanced graph,
the nodes within the same subgroup (i.e., V1 or V2) contain only
positive neighbors, while nodes from different subgroups are
negative neighbors. Based on Definition 1, various graph theo-
retic characterizations of the structural balance were developed
in the literature (Altafini, 2013; Aref & Wilson, 2017; Harary,
1960; Harary & Kabell, 1980). As a complement to the existing
results, rather than using traditional graph theoretic approaches
as in Altafini (2013), Aref and Wilson (2017), Harary (1960) and
Harary and Kabell (1980), the objective of this work is to char-
acterize the structural balance of signed graphs based on a new
perspective from algebraic topology, and exploits algebraic topo-
logical tools to develop topological insights of the structural
balance.

3. Algebraic topological characterizations of structural bal-
ance

Topological characterizations of the structural balance in
signed graphs are developed in this section. To facilitate the
development, algebraic topology is briefly reviewed in Section 3.1
(cf. Hatcher, 2001, for a detailed explanation). Leveraging tools
from algebraic topology, topological characterizations of the
structural balance are extracted in Section 3.2. Examples are
provided in Section 3.3 to elaborate on the developed topological
characterizations.

3.1. Background on simplicial complex, homology, and cohomology

Let V = {vi}, i ∈ {0, . . . , n − 1}, be a finite set of n points. A k-
simplex σk (or a k-dimensional simplex) is a k-dimensional convex
polyhedron formed by an unordered set {v0, . . . , vk} ⊆ V with
vi ̸= vj for all i ̸= j. The faces of the σk consist of (k − 1)-simplices
of the form {v0, . . . , vi−1, vi+1, . . . , vk} for 0 ≤ i ≤ k. Asimplicial
complex X is then defined as a finite collection of simplices closed
with respect to the inclusion of faces. In terms of geometrical re-
alization, a simplicial complex is a combinatorial object composed
of simplices, where graphical components (e.g., nodes, edges, and
cliques2) can be represented by simplices of various dimensions.
In addition to binary relations by edges in conventional graphs, a
simplicial complex also captures higher-order relations among a
set of nodes by simplices of higher dimensions. Simplicial com-
plexes thereby represent a generalization of traditional graphs,
providing a global topological characterization of graphs.

1 Circular subgraphs, instead of cycles, are used to avoid potential confusions
with the topological definition of k-cycles in the simplicial-complex-based
models.
2 A clique is a complete graph formed by a subset of nodes.
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Fig. 1. The illustration of the simplices and the simplicial complex.

Example 1. To illustrate the simplicial complex, graphical ex-
amples are provided in Fig. 1. Fig. 1(a) and (b) show that nodes
and edges in graphs are 0-simplices and 1-simplices, respectively.
Fully connected subsets of nodes (i.e., cliques) can be represented
by higher-order simplices. For instance, a complete graph of 3
nodes corresponds to a 2-simplex (i.e., a triangle) in Fig. 1(c),
while a complete graph of 4 nodes corresponds to a 3-simplex
(i.e., a tetrahedron) in Fig. 1(d). Fig. 1(e) shows the construction
of a simplicial complex from a conventional graph, where the
graph at the bottom can be considered as the projection of the
simplicial complex onto a 2D plane, in which all simplices with
dimension greater than 1 are neglected. Note that, in Fig. 1(e),
the edge connections in the graph at the bottom are preserved
in the simplicial complex by the 0-simplices and 1-simplices.
No existing relationships are lost when modeling a graph by
a simplicial complex. Therefore, any features that can be ex-
tracted from graphs are preserved in the corresponding simplicial
complex.

An orientation of a k-simplex is induced by an ordering of
its vertices, where two orderings are equivalent if and only if
one can be obtained from the other by an even permutation. In
particular, A k-simplex {v0, . . . , vk} with an ordering is denoted by
[v0, . . . , vk], and a change in the ordering corresponds to a change
in the sign of the simplex, i.e.,

[
v0, . . . , vi, . . . , vj, . . . , vk

]
=

−
[
v0, . . . , vj, . . . , vi, . . . , vk

]
. Given an oriented simplicial com-

plex3 X , for each k ≥ 0, Ck (X;Z) is a free abelian group whose
basis is the set of oriented k-simplices σk ∈ X . The elements
of Ck (X;Z) are called k-chains, where a k-chain is defined as
a sum of the form

∑
j ajσ

(k)
j with aj ∈ Z and σ

(k)
j denoting

an oriented k-simplex σk. From the definition of k-chains, the
vector space Ck (X;Z) is clearly an additive abelian group.4 It is
worth pointing out that other types of abelian groups, such as
multiplicative abelian groups, are also applicable. The dimension
of X is the maximum dimension of its simplices. If k is larger than
the dimension of X , Ck (X;Z) = 0.

3 Oriented simplicial complexes are used throughout in this work. Please
note that oriented simplicial complexes are different from ordered simplicial
complexes which are simply simplicial complexes with ordered vertices. For
instance, [a, b, c] and [c, a, b] are two different ordered 2-simplexes as the
vertices have different orders, while [a, b, c] and [c, a, b] are the same orientated
2-simplexes as [c, a, b] = − [a, c, b] = [a, b, c].
4 An additive abelian group (G, +) is a set G together with a binary operation

+:G × G → G satisfying the following axioms: (1) associativity: (a + b) + c =

a + (b + c) for all a, b, c ∈ G; (2) commutativity: a + b = b + a for all a, b ∈ G;
(3) identity element is 0 satisfying a+0 = a for each a ∈ G; and (4) the inverse
element a−1

= −a for each a ∈ G such that a + (−a) = 0 (Durbin, 2008). Some
examples of additive abelian groups are the set of integers Z, the set of rationals
Q, and the set of reals R.

Fig. 2. The boundary maps of an oriented 1-simplex, 2-simplex, and 3-simplex.

The kth simplicial boundary map is a homomorphism5

∂k: Ck (X;Z) → Ck−1 (X;Z) defined as

∂k [v0, . . . , vk] =

k∑
j=0

(−1)j
[
v0, . . . , v̂j, . . . , vk

]
, (1)

where v̂j indicates that vj is removed from the sequence v0, . . . ,

vk. A chain complex is a sequence of homomorphism,

· · ·
∂k+2
−→ Ck+1

∂k+1
−→ Ck

∂k
−→ Ck−1

∂k−1
−→ · · · , (2)

where the homomorphism ∂k satisfies ∂k−1 ◦ ∂k = 0 (Hatcher,
2001), i.e., the image of ∂k is included in the kernel of ∂k−1.

Example 2. Fig. 2 illustrates the boundary maps on oriented sim-
plices. For instance, the oriented 1-simplex [v0, v1] corresponds
to an edge, where the boundary map in (1) yields ∂1 [v0, v1] =

[v1] − [v0]. Similarly, a 2-simplex [v0, v1, v2] corresponds to a
triangle with the boundary map ∂2 [v0, v1, v2] = [v1, v2] −

[v0, v2] + [v0, v1], while a 3-simplex [v0, v1, v2, v3] corresponds
to a tetrahedron with the boundary map ∂3 [v0, v1, v2, v3] =

[v1, v2, v3] − [v0, v2, v3] + [v0, v1, v3] − [v0, v1, v2].

As basic building blocks for simplicial homology, the k-cycles
and the k-boundaries are defined as

k-cycles: ker ∂k = {x ∈ Ck| ∂kx = 0} ,

k-boundaries: img ∂k+1 = {x ∈ Ck| ∃y s.t. x = ∂k+1y} .
(3)

Intuitively, ker ∂k indicates a set of k-chains without boundary
and therefore represent k-dimensional cycles in the simplicial
complex X . Since some of the k-cycles also bound a subcom-
plex of dimension k + 1 in X , the k-boundaries in (3) partic-
ularly indicate a set of k-chains forming boundaries of higher-
dimensional chains. Based on the k-cycles and the k-boundaries,
the kth simplicial homology is defined as the quotient vector
space

Hk (X;Z) ≜ ker ∂k/img ∂k+1. (4)

Consequently, Hk indicates the k-dimensional cycles that are
not the boundaries of higher-dimensional chains, and the di-
mension of Hk is the number of ‘‘k-dimensional holes’’ in X .

5 If (A, ·) and (B, ∗) are two abelian groups with operations · and ∗, a
homomorphism is a mapping f : A → B satisfying f (a · b) = f (a) ∗ f (b) for all
a, b ∈ A (Durbin, 2008).
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For instance, the uncolored quadrilaterals of the simplicial com-
plex in Fig. 1(e) are elements of the first homology group H1
indicating 1-dimensional holes, since the edges of the quadrilat-
erals form 1-cycles that are not the boundaries of any higher-
dimensional simplices. Despite various types, the graphs can be
topologically identical in terms of the number of k-dimensional
cycles. As a topological invariant, Hk provides a characterization
of topological structures of graphs.

Cohomology groups are constructed by turning chain groups
Ck into groups of homomorphisms and boundary operators ∂k
into their dual homomorphisms. Specifically, given a chain group
Ck and an abelian group A, a k-dimensional cochain Ck (X;A) is
defined as a homomorphism ϕ: Ck → A, which maps elements
in Ck to A. Note that the cochains Ck are also abelian groups. A
cochain complex is a dual notion to the chain complex in (2) as

· · ·
δk−1
−→ Ck−1 δk

−→ Ck δk+1
−→ Ck+1 δk+2

−→ · · · (5)

where δk: Ck−1
→ Ck represents the dual homomorphism to ∂k,

satisfying δk+1
◦ δk = 0. The cochain complex in (5) represents

maps between abelian groups Ck but with reversed arrows. The
k-cocycles and the k-coboundaries are defined as

k-cocycles: ker δk+1
=

{
x ∈ Ck

⏐⏐ δk+1x = 0
}
,

k-coboundaries: img δk =
{
x ∈ Ck

⏐⏐ ∃y s.t. x = δky
}
.

(6)

Based on k-cocycles and k-coboundaries, the kth cohomology is
then defined as

Hk (X;A) ≜ ker δk+1/img δk. (7)

3.2. Homology and cohomology based characterizations of structural
balance

To develop homology and cohomology based characteriza-
tions, we start from modeling the signed graph G by a simplicial
complex XG , where existing methods in De Silva and Ghrist
(2006), Hatcher (2001) and Tahbaz-Salehi and Jadbabaie (2010)
can be used to construct XG . Based on the constructed XG , the
cohomology-based topological characterization is developed first,
followed by an extension to homology-based characterizations.
Consider the group A in (7) taking the form of a multiplicative
abelian group6 (Z2, ×) with the basis Z2 = {−1, 1} and the
multiplication operation ‘‘×’’. The multiplicative abelian group
(Z2, ×) is particularly motivated by the use of the product of
edge weights. Let ϕ: XG → Z2 be a group homomorphism
mapping simplices in XG to an element in Z2, i.e., each simplex is
marked as −1 or +1. In particular, the homomorphism ϕ maps
each edge

(
vi, vj

)
in G to its weight wij, i.e., ϕ

([
vi, vj

])
= wij

where
[
vi, vj

]
is the corresponding 1-simplex in XG . The cochain

group Ck (XG;Z2) is thereby formed by ϕ (σk), where σk denotes
oriented k-simplices in XG .

The cochain complex on XG with the group (Z2, ×) is defined
as

· · ·
δk−1
−→ Ck−1 (XG;Z2)

δk
−→ Ck (XG;Z2)

δk+1
−→ · · · , (8)

where the coboundary δk maps an element in Ck−1 (XG;Z2) to
an element in the group Ck (XG;Z2). Specifically, given an ori-
ented (k − 1)-simplex [v0, . . . , vk−1] and an oriented k-simplex

6 A multiplicative abelian group (G, ×) is a set G together with a binary
multiplication operation × that maps the product c = ab to G for any a, b ∈ G.
The multiplicative abelian group (G, ×) is associative (i.e., (ab) c = a (bc) for
all a, b, c ∈ G) and commutative (i.e., ab = ba for all a, b ∈ G). In addition, for
each a ∈ G, there exists an identity element of 1 satisfying a × 1 = a and an
inverse element of a−1 such that aa−1

= 1. For instance, the integers Z \ {0},
the rationals Q \ {0}, and the reals R \ {0} are all multiplicative abelian groups.

[v0, . . . , vk],

δkϕ ([v0, . . . , vk−1]) = ϕ ([v0, . . . , vk])

=

k∏
j=0

ϕ(−1)j ([v0, . . . , v̂j, . . . , vk
]) (9)

where v̂j indicates that vj is removed and ϕ−1 denotes the inverse
element in (Z2, ×). Due to the consideration of a multiplicative
abelian group, ϕ ([v0, . . . , vk]) in (9) is written as products, rather
than the sums in (1) as an additive abelian group. For instance,
given a 0-simplex v0 and a 1-simplex [v0, v1] in XG , the cobound-
ary δ1 mapping ϕ (v0) ∈ C0 (XG;Z2) to ϕ ([v0, v1]) ∈ C1 (XG;Z2)
by δ1ϕ (v0) = ϕ ([v0, v1]) = ϕ (v1) ϕ−1 (v0) = ϕ (v0) ϕ (v1),
where the fact that ϕ−1 (v0) ϕ (v0) = 1 in (Z2, ×) is used.

Based on the cochain complex in (8), the kernel group ker δk+1

is defined as

ker δk+1
= {x ∈ Ck (XG;Z2) | δk+1x = 1}, (10)

where δk+1x = 1 indicates that 1 is the identity element of the
multiplicative abelian group. Similar to (6) and (7), the img δk of
Ck (XG;Z2) and the kth cohomology are defined as

img δk =
{
x ∈ Ck (XG;Z2)

⏐⏐ ∃y s.t. x = δky
}
, (11)

and

Hk (XG;Z2) ≜ ker δk+1/img δk, (12)

respectively.

Lemma 1. Consider a signed graph G modeled by a simplicial
complex XG . Suppose that there exists a circular subgraph in G
composed of three vertices

{
vi, vj, vk

}
, which corresponds to an

oriented 2-simplex
[
vi, vj, vk

]
in XG . The circular subgraph is positive

if and only if ϕ
([

vi, vj
])

∈ ker δ2.

Proof. To prove the sufficient condition, if ϕ
([

vi, vj
])

∈ ker δ2,
the definition of cocycles in (10) implies δ2ϕ

([
vi, vj

])
= 1. Since[

vi, vj, vk
]
is a 2-simplex containing

[
vi, vj

]
, the homomorphism

yields

δ2ϕ
([

vi, vj
])

= ϕ
([

vi, vj, vk
])

= ϕ
([

vj, vk
])

ϕ−1 ([vi, vk]) ϕ
([

vi, vj
])

= ϕ
([

vj, vk
])

ϕ ([vk, vi]) ϕ
([

vi, vj
])

= 1,

where ϕ−1 ([vi, vk]) = ϕ ([vk, vi]) is due to the change of the
ordering of vertices. Since ϕ maps an edge in G to its edge weight,
ϕ

([
vj, vk

])
ϕ ([vk, vi]) ϕ

([
vi, vj

])
= 1 indicates that the product

of the edge weights is one. Therefore, the circular subgraph
composed of

{
vi, vj, vk

}
is a positive cycle.

To prove the necessary condition, if the circular subgraph with
nodes

{
vi, vj, vk

}
in G is positive,

1 = ϕ
([

vj, vk
])

ϕ ([vk, vi]) ϕ
([

vi, vj
])

= ϕ
([

vj, vk
])

ϕ−1 ([vi, vk]) ϕ
([

vi, vj
])

= δ2ϕ
([

vi, vj
])

,

which indicates that ϕ
([

vi, vj
])

∈ ker δ2. □

Theorem 1. Given the simplicial complex XG modeling the signed
graph G, G is structurally balanced if all 3-node circular subgraphs
(i.e., circles composed of three vertices

{
vi, vj, vk

}
) are positive and

the first cohomology satisfies H1 (XG;Z2) = 0.

Proof. According to (12), the first cohomology H1 (XG;Z2) is
defined as a quotient vector space of ker δ2 and img δ1. If H1

= 0,
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then

ker δ2 = img δ1, (13)

which indicates that the set of 1-cocycles (i.e., ker δ2) coincides
with the set of 1-coboundaries (i.e., img δ1). If all 3-node circular
graphs

{
vi, vj, vk

}
in G are positive, by Lemma 1, we know that

ϕ
([

vj, vk
])

ϕ ([vk, vi]) ϕ
([

vi, vj
])

= 1 and ϕ
([

vi, vj
])

∈ ker δ2.
From (13), ϕ

([
vi, vj

])
also belongs to img δ1. Therefore, there ex-

ists a 0-simplex vi that can be mapped to
[
vi, vj

]
by the definition

of k-coboundary in (11).
Due to the consideration of (Z2, ×), the homomorphism ϕ (vi)

also maps the 0-simplex vi in XG (i.e., the node vi in G) to either
−1 or 1. Clearly, C0 (XG;Z2) is an abelian group with ϕ (vi) as its
basis. Suppose that the node set V in G can be partitioned into
two sets V1 and V2, where V1 ∩ V2 = ∅ and V1 ∪ V2 = V . Without
loss of generality, let ϕ (vi) = 1 if vi ∈ V1 and ϕ (vi) = −1
otherwise. If an edge

(
vi, vj

)
in G is positive, its corresponding

1-simplex
[
vi, vj

]
in XG satisfies

ϕ
([

vi, vj
])

= ϕ (vi) ϕ
(
vj

)
= 1, (14)

which can only be true when ϕ (vi) and ϕ
(
vj

)
are both positive or

both negative. Therefore, ϕ
([

vi, vj
])

= 1 in (14) indicates that vi
and vj are from the same set, i.e., either both from V1 or both from
V2. Analogously, if an edge

(
vi, vj

)
in G is negative, ϕ

([
vi, vj

])
=

−1 indicates that vi and vj are from different sets. Therefore,
positive neighbors only exist in the same subset (i.e., either V1
or V2), while negative neighbors come from different subsets,
which indicates that the signed graph G is structurally balanced
by Definition 1. □

Note that homology and cohomology are computable topolog-
ical invariants and various existing methods can be used to verify
if the first homology or cohomology is vanishing (Edelsbrunner
& Harer, 2010). Theorem 1 indicates that, if a simplicial com-
plex XG has a vanishing first cohomology H1 (XG;Z2) = 0, the
existence of the structural balance in G can be verified by only
checking whether all 3-node circular subgraphs are positive. In
addition, the developed characterization based on the vanishing
cohomology in Theorem 1 unravels the fundamental relationship
between the structural balance and the network structure from
a global topological perspective. Since homology has an intuitive
interpretation as ‘‘holes’’ in the constructed simplicial complex,
the following corollary shows how Theorem 1 can be extended
based on the first homology.

Corollary 1. The signed graph G is structurally balanced if all 3-
node circular subgraphs are positive and the first homology satisfies
H1 (XG;Z) = 0, where XG is the simplicial complex constructed from
G.

The universal coefficient theorem for cohomology in Hatcher
(2001) indicates that, if the first homology satisfies H1 (XG;Z) =

0, the first cohomology must have H1 (XG;A) = 0, where A is
an abelian group. Therefore, Corollary 1 is a direct consequence
of Theorem 1, where the abelian group A takes a particular form
of Z2.

Remark 1. Compared to the condition of H1 (XG;Z2) = 0 in
Theorem 1, a stronger condition of H1 (XG;Z) = 0 is required
in Corollary 1. Note that H1 (XG;Z) = 0 can be true for a variety
of networks. For instance, there is a high probability that the first
homology vanishes in large random graphs (Kahle, 2009).

Corollary 2. A complete signed graph G is structurally balanced if
all 3-node circular subgraphs are positive.

It is well known that a complete graph always has vanish-
ing homologies (Hatcher, 2001). Therefore, when considering a
complete signed graph G, the condition of H1 (XG;Z) = 0 in
Corollary 1 can be further relaxed in Corollary 2. When G is
complete, the verification of the structural balance boils down to
checking whether all 3-node circular subgraphs in G are positive.

Theorem 2. Consider a signed graph G modeled by a simplicial com-
plex XG , where the first homology H1 (XG;Z) is nonzero. The signed
graph G is structurally balanced if and only if all 3-node circular
subgraphs are positive and the circular subgraphs corresponding to
the nonzero H1 (XG;Z) are also positive.

Proof. SinceH1 (XG;Z) is nonzero, there must exist concatenated
1-simplices (e.g., a path in G) forming one-dimensional holes in
XG . Without loss of generality, only 1 one-dimensional hole is
considered in the following analysis. For the case of multiple one-
dimensional holes, the same analysis can be repeated for each
hole.

Let GH = (VH, EH,WH) be the circular subgraph in G corre-
sponding to the one-dimensional hole in XG . If GH is positive, GH
is structurally balanced (Altafini, 2013), which indicates that VH
can be divided into two sets VH1 and VH2 with VH1 ∪ VH2 = VH
and VH1 ∩ VH2 = ∅ such that edges within each set are positive
and edges connecting different sets are negative. Note that GH
remains structurally balanced by Definition 1, if GH is augmented
to a complete graph G′

H by adding positive edges to nodes that
are not connected in the same set, and negative edges between
nodes from different sets. Since G′

H is a complete graph, G′
H is

contractible and thus has the vanishing first homology, which
indicates all circular subgraphs in G′

H are positive. Together with
the condition that all 3-node circular subgraphs are positive, the
original graph G is also structurally balanced by Theorem 1.

To prove the necessary condition, note that a connected signed
graph G is structurally balanced if and only if all circular sub-
graphs of G are positive, i.e., the product of edge weights on any
circular subgraph is positive (Altafini, 2013). Consequently, all 3-
node circular subgraphs and the circular subgraphs corresponding
to the nonzero H1 (XG;Z) are all positive. □

Theorem 2 develops a necessary and sufficient condition to
characterize the structural balance. Specifically, Theorem 2 re-
lates the structure balance to the 3-node circular subgraphs,
which provides insights into the key topological structures that
result in the structural balance. If a graph does not have 3-node
circular subgraphs, Theorem 2 is relaxed to only require that
the circular subgraphs corresponding to the nonzero H1 (XG;Z)

are all positive. Note that the developed characterizations are
only applicable to undirected graphs, since Theorems 1 and 2 are
developed based on a multiplicative abelian group (Z2, ×), where
only the product of edge weights matters in characterizing the
structural balance. The direction of edges is not accounted for
in the considered multiplicative abelian group. Ongoing research
will consider other abelian groups taking into account the direc-
tion of edges if directed graphs are considered. Nevertheless, the
revealed key topological structures can be leveraged in topology
design (see Section 3.3 for an illustrative example).

Example 3. Fig. 3 is provided to illustrate the general ideas in the
proof of Theorem 2. Consider a simplicial complex XG consisting
of six vertices (0-simplices), eight edges (1-simplices), and two
2-simplices (filled triangles) in Fig. 3(a). The vertices {1, 2, 3} and
{2, 4, 5} form two positive 3-node circular subgraphs, while the
vertices {2, 3, 6, 5} form a one-dimensional hole in XG , indicating
H1 (XG;Z) ̸= 0. Fig. 3(b) shows the construction of a complete
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Fig. 3. The illustration of the proof of Theorem 2.

Fig. 4. (a) The structurally unbalanced signed graph G. (b) The simplicial com-
plex XG constructed from G, where the dashed lines indicate a one-dimensional
hole.

subgraph over {2, 3, 6, 5}, which can be verified to be struc-
turally balanced. Note that, in Fig. 3(b), its first homology H1 be-
comes zero due to the absence of the 1 dimensional hole, where
Theorem 1 can be invoked to show that both Fig. 3(a) and (b) are
structurally balanced.

3.3. Topology design

In this section, we will demonstrate the effectiveness of the
developed topological characterizations of the structural balance
and how the characterizations can be potentially extended to
construct structurally balanced graphs via topology design.

Consider a signed graph G in Fig. 4(a), where negative edges
are marked by −1. The signed graph G is initially structurally
unbalanced. To demonstrate the developed topological character-
izations of the structural balance in Section 3.2, G is represented
by a simplicial complex XG in Fig. 4(b), which consists of 10
0-simplices (nodes), 18 1-simplices (edges), 9 2-simplices (trian-
gles), and 1 3-simplex (tetrahedron). It can be verified that all 2-
simplices (i.e., 3-node circular subgraphs) are positive, while the
vertices {3, 2, 6, 7} form a one-dimensional hole (dashed lines),
which indicates a non-vanishing first homology H1 (XG;Z) ̸= 0.
Since the one-dimensional hole formed by {3, 2, 6, 7} is indeed a
negative 4-node circular subgraph, the conditions in Theorem 2
are not satisfied, which is consistent with the fact that G is
structurally unbalanced.

In XG , all 2-simplices are positive, and the only violation
to Theorem 2 is the non-vanishing H1 formed by the vertices
{3, 2, 6, 7}. If G is modified by removing the edge {3, 7}, the ver-
tices {3, 2, 6, 7} no longer form a one-dimensional hole, and thus
H1 (XG;Z) = 0, which indicates that the modified G becomes
structurally balanced by Corollary 1. Note that the removal of
{3, 7} is not the only way to construct a structurally balanced
graph from G. An alternative is to switch the edge weight of
{3, 7} from +1 to −1, resulting in a positive circular subgraph of
{3, 2, 6, 7}. Theorem 2 can then be invoked to indicate that the
modified G with a negative weight on {3, 7} is also structurally
balanced.

Remark 2. The developed algebraic topological characterizations
can not only verify the structural balance, but also provide in-
sights on how to tweak the network topology to yield structural

balance. What makes the topological characterizations power-
ful is their capability to identify the key structures (i.e., one-
dimensional holes) or key components (i.e., certain edges) in the
graph, such that a minor modification on these key structures or
components can result in a significant change of network topol-
ogy structures, e.g., a change from structural unbalance to struc-
tural balance. Such insights are generally not obtainable from
standard graphical methods and conventional analysis tools. The
key enablers in our approach are the use of the novel simplicial-
complex-based modeling approach capturing the global topolog-
ical structure of the signed graph, and tools such as homology
and cohomology to extract topological properties crucial to the
structural balance.

4. Discussion and conclusion

Algebraic topological characterizations of the structural bal-
ance in signed graphs are developed in this work. Leveraging tools
from algebraic topology, simplicial complexes are used to model
signed graphs, upon which simplicial homology and cohomology
based characterizations are developed to capture the topolog-
ical properties of the structural balance. The effectiveness of
the developed topological characterizations is demonstrated via
examples. Additional research will continue along this direction
and further explore how the developed topological characteri-
zations can be utilized in topology design for desired network
performance. Specifically, based on (Aref & Wilson, 2017), ad-
ditional research will investigate the potential extension of the
developed cycle based topological characterizations in measuring
partial balance in signed graphs. Future research will also con-
sider extending the work of Yaghmaie, Su, Lewis, and Xie (2017)
and investigate the topological characterizations of generalized
structural balance of graphs with complex edge weights.
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